Tag Archives: Safety

Water Quality

Drinking Water

Questions about Water QualityThe United States has one of the safest water supplies in the world. However, national statistics don’t tell you specifically about the quality and safety of the water coming out of your tap. That’s because drinking water quality varies from place to place, depending on the condition of the source water from which it is drawn, and the treatment it receives. Now you have a new way to find information about your drinking water if it comes from a public water supplier (The EPA doesn’t regulate private wells, but recommends that well.  owners have their water tested annually.) Starting in 1999, every community water supplier must provide an annual report (sometimes called a “consumer confidence report”) to its customers. The report provides information on your local drinking water quality, including the water’s source, the contaminants found in the water, and how consumers can get involved in protecting drinking water. You may want more information, or you may have more questions. One place you can go is to your water supplier, who is best equipped to answer questions about your specific water supply.

What contaminants may be found in drinking water?

There is no such thing as naturally pure water. In nature, all water contains some impurities. As water flows in streams, sits in lakes, and filters through layers of soil and rock in the ground, it dissolves or absorbs the substances that it touches. Some of these substances are harmless. In fact, some people prefer mineral water precisely because minerals give it an appealing taste. However, at certain levels, minerals, just like man-made chemicals, are considered contaminants that can make water unpalatable or even unsafe. Some contaminants come from the erosion of natural rock formations. Other contaminants are substances discharged from factories, applied to farmlands, or used by consumers in their homes and yards. Sources of contaminants might be in your neighborhood or might be many miles away. Your local water quality report tells which contaminants are in your drinking water, the levels at which they were found, and the actual or likely source of each contaminant. Some ground water systems have established wellhead protection programs to prevent substances from contaminating their wells. Similarly, some surface-water systems protect the watershed around their reservoir to prevent contamination. Right now, states and water suppliers are working systematically to assess every source of drinking water, and to identify potential sources of contaminants. This process will help communities to protect their drinking water supplies from contamination.

Where does drinking water come from?

A clean, constant supply of drinking water is essential to every community. People in large cities frequently drink water that comes from surface-water sources, such as lakes, rivers and reservoirs. Sometimes, these sources are close to the community. Other times, drinking water suppliers get their water from sources many miles away. In either case, when you think about where your drinking water comes from, it’s important to consider not just the part of the river or lake that you can see, but the entire watershed. The watershed is the land area over which water flows into the river, lake or reservoir. In rural areas, people are more likely to drink ground water that was pumped from a well. These wells tap into aquifers, the natural reservoirs under the earth’s surface, that may be only a few miles wide, or may span the borders of many states. As with surface water, it is important to remember that activities many miles away from you may affect the quality of ground water. Your annual drinking water quality report will tell you where your water supplier gets your water.

How is drinking water treated?

When a water supplier takes untreated water from a river or reservoir, the water often contains dirt and tiny pieces of leaves and other organic matter, as well as trace amounts of certain contaminants. When it gets to the treatment plant, water suppliers often add chemicals, called coagulants, to the water. These act on the water as it flows very slowly through tanks so that the dirt and other contaminants form clumps that settle to the bottom. Usually, this water then flows through a filter for removal of the smallest contaminants, such as viruses and Giardia. Most ground water is naturally filtered as it passes through layers of the earth into underground reservoirs known as aquifers. Water that suppliers pump from wells generally contains less organic material than surface water, and may not need to go through any or all of these treatments. Water TowerThe quality of the water will depend on local conditions. The most common drinking water treatment, considered by many to be one of the most important scientific advances of the 20th century, is disinfection. Most water suppliers add chlorine or another disinfectant to kill bacteria and other germs. Water suppliers use other treatments as needed, according to the quality of their source water. For example, systems whose water is contaminated with organic chemicals can treat their water with activated carbon, which adsorbs or attracts the chemicals dissolved in the water.

What if I have special health needs?

People who have HIV/AIDS, are undergoing chemotherapy, take steroids, or for another reason have a weakened immune system may be more susceptible to microbial contaminants, including Cryptosporidium, in drinking water. If you or someone you know fall into one of these categories, talk to your healthcare provider to find out if you need to take special precautions, such as boiling your water. Young children are particularly susceptible to the effects of high levels of certain contaminants, including nitrate and lead. To avoid exposure to lead, use water from the cold tap for making baby formula, drinking and cooking, and let the water run for a minute or more if the water hasn’t been turned on for six or more hours. If your water supplier alerts you that your water does not meet the EPA’s standard for nitrates, and you have children under 6 months old, consult your healthcare provider. You may want to find an alternate source of water that contains lower levels of nitrates for your child.

What are the health effects of contaminants in drinking water?

The EPA has set standards for more than 80 contaminants that may be present in drinking water and pose a risk to human health. The EPA sets these standards to protect the health of everybody, including vulnerable groups like children. The contaminants fall into two groups, according to the health effects that they cause. Your local water supplier will alert you through the local media, direct mail, or other means if there is a potential acute or chronic health effect from compounds in the drinking water. You may want to contact them for additional information specific to your area. Acute effects occur within hours or days of the time that a person consumes a contaminant. People can suffer acute health effects from almost any contaminant if they are exposed to extraordinarily high levels (as in the case of a spill). In drinking water,microbes, such as bacteria and viruses, are the contaminants with the greatest chance of reaching levels high enough to cause acute health effects. Most people’s bodies can fight off these microbial contaminants the way they fight off germs, and these acute contaminants typically don’t have permanent effects. Nonetheless, when high-enough levels occur, they can make people ill, and can be dangerous or deadly for a person whose immune system is already weak due to HIV/AIDS, chemotherapy, steroid use, or another reason. Chronic effects occur after people consume a contaminant at levels over the EPA’s safety standards for many years. The drinking water contaminants that can have chronic effects are chemicals (such as disinfection byproducts, solvents, and pesticides), radionuclides (such as radium), and minerals (such as arsenic). Examples of these chronic effects include cancer, liver and kidney problems, and reproductive difficulties.

Water GlassWho is responsible for drinking water quality?

The Safe Drinking Water Act gives the Environmental Protection Agency (EPA) the responsibility for setting national drinking water standards that protect the health of the 250 million people who get their water from public water systems. Other people get their water from private wells which are not subject to federal regulations. Since 1974, the EPA has set national standards for over 80 contaminants that may occur in drinking water. While the EPA and state governments set and enforce standards, local governments and private water suppliers have direct responsibility for the quality of the water that flows to your tap. Water systems test and treat their water, maintain the distribution systems that deliver water to consumers, and report on their water quality to the state. States and the EPA provide technical assistance to water suppliers and can take legal action against systems that fail to provide water that meets state and EPA standards.

What is a violation of a drinking water standard?

Drinking water suppliers are required to monitor and test their water many times, for many things, before sending it to consumers. These tests determine whether and how the water needs to be treated, as well as the effectiveness of the treatment process. If a water system consistently sends to consumers water that contains a contaminant at a level higher than EPA or state health standards regulate, or if the system fails to monitor for a contaminant, the system is violating regulations, and is subject to fines and other penalties. When a water system violates a drinking water regulation, it must notify the people who drink its water about the violation, what it means, and how they should respond. In cases where the water presents an immediate health threat, such as when people need to boil water before drinking it, the system must use television, radio and newspapers to get the word out as quickly as possible. Other notices may be sent by mail, or delivered with the water bill. Each water suppliers’ annual water quality report must include a summary of all the violations that occurred during the previous year.

How can I help protect my drinking water?

Using the new information that is now available about drinking water, citizens can be aware of the challenges of keeping drinking water safe and take an active role in protecting drinking water. There are lots of ways that individuals can get involved. Some people will help clean up the watershed that is the source of their community’s water. Other people might get involved in wellhead protection activities to prevent the contamination of the ground water source that provides water to their community. These people will be able to make use of the information that states and water systems are gathering as they assess their sources of water.  Concerned citizens may want to attend public meetings to ensure that their community’s need for safe drinking water is considered in making decisions about land use. You may wish to participate when your state and water system make funding decisions. And all consumers can do their part to conserve water and to dispose properly of household chemicals.

Electrical Safety

Electricity is an essential part of our lives. However, it has the potential to cause great harm. Electrical systems will function almost indefinitely, if properly installed and not overloaded or physically abused. Electrical fires in our homes claim the lives of 485 Americans each year and injure 2,305 more. Some of these fires are caused by electrical system failures and appliance defects, but many more are caused by the misuse and poor maintenance of electrical appliances, incorrectly installed wiring, and overloaded circuits and extension cords.  Some safety tips to remember:

  • Never use anything but the proper fuse to protect a circuit.Never use anything but the proper fuse to protect a circuit.
  • Find and correct overloaded circuits.
  • Never place extension cords under rugs.
  • Outlets near water should be GFCI-type outlets.
  • Don’t allow trees near power lines to be climbed.
  • Keep ladders, kites, equipment and anything else away from overhead power lines.

Electrical Panels

Electricity enters the home through a control panel and a main switch where one can shut off all the power in an emergency. These panels are usually located in the basement. Control panels use either fuses or circuit breakers. Install the correct fuses for the panel. Never use a higher-numbered fuse or a metallic item, such as a penny. If fuses are used and there is a stoppage in power, look for the broken metal strip in the top of a blown fuse. Replace the fuse with a new one marked with the correct amperage. Reset circuit breakers from “off” to “on.” Be sure to investigate why the fuse or circuit blew. Possible causes include frayed wires, overloaded outlets, or defective appliances. Never overload a circuit with high-wattage appliances. Check the wattage on appliance labels. If there is frayed insulation or a broken wire, a dangerous short circuit may result and cause a fire. If power stoppages continue or if a frayed or broken wire is found, contact an electrician.

Outlets and Extension Cords

Make sure all electrical receptacles or outlets are three-hole, grounded outlets. If there is water in the area, there should be a GFCI or ground-fault circuit interrupter outlet. All outdoor outlets should be GFCIs. There should be ample electrical capacity to run equipment without tripping circuit breakers or blowing fuses. Minimize extension cord use. Never place them under rugs. Use extension cords sparingly and check them periodically. Use the proper electrical cord for the job, and put safety plugs in unused outlets.

Electrical Appliances

Appliances need to be treated with respect and care. They need room to breathe. Avoid enclosing them in a cabinet without proper openings, and do not store papers around them. Level appliances so they do not tip. Washers and dryers should be checked often. Their movement can put undue stress on electrical connections. If any appliance or device gives off a tingling shock, turn it off, unplug it, and have a qualified person correct the problem. Shocks can be fatal. Never insert metal objects into appliances without unplugging them. Check appliances periodically to spot worn or cracked insulation, loose terminals, corroded wires, defective parts and any other components that might not work correctly. Replace these appliances or have them repaired by a person qualified to do so.

Electrical Heating Equipment

Portable electrical heating equipment may be used in the home as a supplement to the home heating system. Caution must be taken when using these heating supplements. Keep them away from combustibles, and make sure they cannot be tipped over. Keep electrical heating equipment in good working condition. Do not use them in bathrooms because of the risk of contact with water and electrocution. Many people use electric blankets in their homes. They will work well if they are kept in good condition. Look for cracks and breaks in the wiring, plugs and connectors. Look for charred spots on both sides. Many things can cause electric blankets to overheat. They include other bedding placed on top of them, pets sleeping on top of them, and putting things on top of the blanket when it is in use. Folding the blankets can also bend the coils and cause overheating.

Children

Electricity is important to the workings of the home, but can be dangerous, especially to children. Electrical safety needs to be taught to children early on. Safety plugs should be inserted in unused outlets when toddlers are in the home. Make sure all outlets in the home have face plates. Teach children not to put things into electrical outlets and not to chew on electrical cords. Keep electrical wiring boxes locked. Do not allow children to come in contact with power lines outside. Never allow them to climb trees near power lines, utility poles or high tension towers.

Electricity and Water

A body can act like a lightning rod and carry the current to the ground. People are good conductors of electricity, particularly when standing in water or on a damp floor. Never use any electrical appliance in the tub or shower. Never touch an electric cord or appliance with wet hands. Do not use electrical appliances in damp areas or while standing on damp floors. In areas where water is present, use outlets with GFCIs. Shocks can be fatal.

Animal Hazards

Mice and other rodents can chew on electrical wires and damage them. If rodents are suspected or known to be in the home, be aware of the damage they may cause, and take measures to get rid of them.

Outside Hazards

There are several electrical hazards outside the home. Be aware of overhead and underground power lines. People have been electrocuted when an object they are moving has come in contact with the overhead power lines. Keep ladders, antennae, kites and poles away from power lines leading to the house and other buildings. Do not plant trees, shrubs or bushes under power lines or near underground power lines. Never build a swimming pool or other structure under the power line leading to your house. Before digging, learn the location of underground power lines.

Do not climb power poles or transmission towers. Never let anyone shoot or throw stones at insulators. If you have an animal trapped in a tree or on the roof near electric lines, phone your utility company. Do not take a chance of electrocuting yourself. Be aware of weather conditions when installing and working with electrical appliances. Never use electrical power tools or appliances with rain overhead or water underfoot. Use only outdoor lights, fixtures and extension cords. Plug into outlets with a GFCI. Downed power lines are extremely dangerous. If you see a downed power line, call the electric company, and warn others to stay away. If a power line hits your car while you are in it, stay inside unless the car catches fire. If the car catches fire, jump clear without touching metal and the ground at the same time.

MORE SAFETY PRECAUTIONS:

  • Routinely check your electrical appliances and wiring.
  • Hire an InterNACHI inspector. InterNACHI inspectors must pass rigorous safety training and are knowledgeable in the ways to reduce the likelihood of electrocution.
  • Frayed wires can cause fires.Frayed wires can cause fires. Replace all worn, old and damaged appliance cords immediately.
  • Use electrical extension cords wisely and don’t overload them.
  • Keep electrical appliances away from wet floors and counters; pay special care to electrical appliances in the bathroom and kitchen.
  • Don’t allow children to play with or around electrical appliances, such as space heaters, irons and hair dryers.
  • Keep clothes, curtains and other potentially combustible items at least 3 feet from all heaters.
  • If an appliance has a three-prong plug, use it only in a three-slot outlet. Never force it to fit into a two-slot outlet or extension cord.
  • Never overload extension cords or wall sockets. Immediately shut off, then professionally replace, light switches that are hot to the touch, as well as lights that flicker. Use safety closures to childproof electrical outlets.
  • Check your electrical tools regularly for signs of wear. If the cords are frayed or cracked, replace them. Replace any tool if it causes even small electrical shocks, overheats, shorts out or gives off smoke or sparks.

In summary, household electrocution can be prevented by following the tips offered in this guide and by hiring an InterNACHI inspector.

Dryer Vent Safety

by Nick Gromicko and Kenton Shepard

Clothes dryers evaporate the water from wet clothing by blowing hot air past them while they tumble inside a spinning drum. Heat is provided by an electrical heating element or gas burner. Some heavy garment loads can contain more than a gallon of water which, during the drying process, will become airborne water vapor and leave the dryer and home through an exhaust duct (more commonly known as a dryer vent).

A vent that exhausts moist air to the home’s exterior has a number of requirements: Dryer Vent

  1. It should be connected. The connection is usually behind the dryer but may be beneath it. Look carefully to make sure it’s actually connected.
  2. It should not be restricted. Dryer vents are often made from flexible plastic or metal duct, which may be easily kinked or crushed where they exit the dryer and enter the wall or floor. This is often a problem since dryers tend to be tucked away into small areas with little room to work. Vent hardware is available which is designed to turn 90° in a limited space without restricting the flow of exhaust air. Restrictions should be noted in the inspector’s report. Airflow restrictions are a potential fire hazard.
  3. One of the reasons that restrictions are a potential fire hazard is that, along with water vapor evaporated out of wet clothes, the exhaust stream carries lint – highly flammable particles of clothing made of cotton and polyester. Lint can accumulate in an exhaust duct, reducing the dryer’s ability to expel heated water vapor, which then accumulates as heat energy within the machine. As the dryer overheats, mechanical failures can trigger sparks, which can cause lint trapped in the dryer vent to burst into flames. This condition can cause the whole house to burst into flames. Fires generally originate within the dryer but spread by escaping through the ventilation duct, incinerating trapped lint, and following its path into the building wall.

InterNACHI believes that house fires caused by dryers are far more common than are generally believed, a fact that can be appreciated upon reviewing statistics from the National Fire Protection Agency. Fires caused by dryers in 2005 were responsible for approximately 13,775 house fires, 418 injuries, 15 deaths, and $196 million in property damage. Most of these incidents occur in residences and are the result of improper lint cleanup and maintenance. Fortunately, these fires are very easy to prevent.

The recommendations outlined below reflect International Residential Code (IRC) SECTION M1502 CLOTHES DRYER EXHAUST guidelines:

M1502.5 Duct construction.
Exhaust ducts shall be constructed of minimum 0.016-inch-thick (0.4 mm) rigid metal ducts, having smooth interior surfaces, with joints running in the direction of air flow. Exhaust ducts shall not be connected with sheet-metal screws or fastening means which extend into the duct.

This means that the flexible, ribbed vents used in the past should no longer be used. They should be noted as a potential fire hazard if observed during an inspection.

M1502.6 Duct length.

The maximum length of a clothes dryer exhaust duct shall not exceed 25 feet (7,620 mm) from the dryer location to the wall or roof termination. The maximum length of the duct shall be reduced 2.5 feet (762 mm) for each 45-degree (0.8 rad) bend, and 5 feet (1,524 mm) for each 90-degree (1.6 rad) bend. The maximum length of the exhaust duct does not include the transition duct.

This means that vents should also be as straight as possible and cannot be longer than 25 feet. Any 90-degree turns in the vent reduce this 25-foot number by 5 feet, since these turns restrict airflow.

A couple of exceptions exist:

  1. The IRC will defer to the manufacturer’s instruction, so if the manufacturer’s recommendation permits a longer exhaust vent, that’s acceptable. An inspector probably won’t have the manufacturer’s recommendations, and even if they do, confirming compliance with them exceeds the scope of a General Home Inspection.
  2. The IRC will allow large radius bends to be installed to reduce restrictions at turns, but confirming compliance requires performing engineering calculation in accordance with the ASHRAE Fundamentals Handbook, which definitely lies beyond the scope of a General Home Inspection.

M1502.2 Duct termination. Dryer Vent Safety
Exhaust ducts shall terminate on the outside of the building or shall be in accordance with the dryer manufacturer’s installation instructions. Exhaust ducts shall terminate not less than 3 feet (914 mm) in any direction from openings into buildings. Exhaust duct terminations shall be equipped with a backdraft damper. Screens shall not be installed at the duct termination.

Inspectors will see many dryer vents terminate in crawlspaces or attics where they deposit moisture, which can encourage the growth of mold, wood decay, or other material problems. Sometimes they will terminate just beneath attic ventilators. This is a defective installation. They must terminate at the exterior and away from a door or window. Also, screens may be present at the duct termination and can accumulate lint and should be noted as improper.

M1502.3 Duct size.
The diameter of the exhaust duct shall be as required by the clothes dryer’s listing and the manufacturer’s installation instructions.

Look for the exhaust duct size on the data plate.

M1502.4 Transition ducts.
Transition ducts shall not be concealed within construction. Flexible transition ducts used to connect the dryer to the exhaust duct system shall be limited to single lengths not to exceed 8 feet (2438 mm), and shall be listed and labeled in accordance with UL 2158A.

In general, an inspector will not know specific manufacturer’s recommendations or local applicable codes and will not be able to confirm the dryer vent’s compliance to them, but will be able to point out issues that may need to be corrected.

Child-Proofing Your Home: 12 Safety Devices to Protect Your Children

About 2.5 million children are injured or killed by hazards in the home each year. The good news is that many of these incidents can be prevented by using simple child-safety devices on the market today. Any safety device you buy should be sturdy enough to prevent injury to your child, yet easy for you to use. It’s important to follow installation instructions carefully.

In addition, if you have older children in the house, be sure they re-secure safety devices. Remember, too, that no device is completely childproof; determined youngsters have been known to disable them. You can childproof your home for a fraction of what it would cost to have a professional do it. And safety devices are easy to find. You can buy them at hardware stores, baby equipment shops, supermarkets, drug stores, home and linen stores, and through online and mail-order catalogues.

InterNACHI inspectors, too, should know what to tell clients who are concerned about the safety of their children. Here are some child-safety devices that can help prevent many injuries to young children.

1.  Use safety latches and locks for cabinets and drawers in kitchens, bathrooms, and other areas to help prevent poisonings and other injuries. Safety latches and locks on cabinets and drawers can help prevent children from gaining access to medicines and household cleaners, as well as knives and other sharp objects.

Look for safety latches and locks that adults can easily install and use, but that are sturdy enough to withstand pulls and tugs from children. Safety latches are not a guarantee of protection, but they can make it more difficult for children to reach dangerous substances. Even products with child-resistant packaging should be locked away out of reach; this packaging is not childproof.

But, according to Colleen Driscoll, executive director of the International Association for Child Safety (IAFCS), “Installing an ineffective latch on a cabinet is not an answer for helping parents with safety.  It is important to understand parental habits and behavior.  While a latch that loops around cabinet knob covers is not expensive and easy to install, most parents do not consistently re-latch it.”

Parents should be sure to purchase and install safety products that they will actually adapt to and use.

2.  Use safety gates to help prevent falls down stairs and to keep children away from dangerous areas. Look for safety gates that children cannot dislodge easily, but that adults can open and close without difficulty. For the top of stairs, gates that screw into the wall are more secure than “pressure gates.”

New safety gates that meet safety standards display a certification seal from the Juvenile Products Manufacturers Association (JPMA). If you have an older safety gate, be sure it doesn’t have “V” shapes that are large enough for a child’s head and neck to fit into.

3.  Use door locks to help prevent children from entering rooms and other areas with possible dangers, including swimming pools.

To prevent access to swimming pools, door locks on safety gates should be placed high, out of reach of young children. Locks should be used in addition to fences and alarms. Sliding glass doors with locks that must be re-secured after each use are often not an effective barrier to pool access.

Door knob covers, while inexpensive and recommended by some, are generally not effective for children who are tall enough to reach the doorknob; a child’s ingenuity and persistence can usually trump the cover’s effectiveness.

4.  Use anti-scald devices for faucets and shower heads, and set your water heater temperature to 120° F to help prevent burns from hot water. A plumber may need to install these.

5.  Use smoke detectors on every level of your home and near bedrooms to alert you to fires. Smoke detectors are essential safety devices for protection against fire deaths and injuries. Check smoke detectors once a month to make sure they’re working. If detectors are battery-operated, change batteries at least once a year, or consider using 10-year batteries.

6.  Use window guards and safety netting to help prevent falls from windows, balconies, decks and landings. Window guards and safety netting for balconies and decks can help prevent serious falls.  Check these safety devices frequently to make sure they are secure and properly installed and maintained. There should be no more than 4 inches between the bars of the window guard. If you have window guards, be sure at least one window in each room can be easily used for escape in a fire. Window screens are not effective for preventing children from falling out of windows.

7.  Use corner and edge bumpers to help prevent injuries from falls against sharp edges of furniture and fireplaces. Corner and edge bumpers can be used with furniture and fireplace hearths to help prevent injuries from falls, and to soften falls against sharp and rough edges.

Be sure to look for bumpers that stay securely on furniture and hearth edges.

8.  Use receptacle or outlet covers and plates to help prevent children from electrical shock and possible electrocution.

Be sure the outlet protectors cannot be easily removed by children and are large enough so that children cannot choke on them.

9.  Use a carbon monoxide (CO) detector outside bedrooms to help prevent CO poisoning. Consumers should install CO detectors near sleeping areas in their homes. Households that should use CO detectors include those with gas or oil heat or with attached garages.

10.  Cut window blind cords to help prevent children from strangling in blind-cord loops. Window blind cord safety tassels on miniblinds and tension devices on vertical blinds and drapery cords can help prevent deaths and injuries from strangulation in the loops of cords. Inner cord stops can help prevent strangulation in the inner cords of window blinds.

However, the IAFCS’s Ms. Driscoll states, “Cordless is best.  Although not all families are able to replace all products, it is important that parents understand that any corded blind or window treatment can still be a hazard.  Unfortunately, children are still becoming entrapped in dangerous blind cords despite advances in safety in recent years.”

For older miniblinds, cut the cord loop, remove the buckle, and put safety tassels on each cord. Be sure that older vertical blinds and drapery cords have tension or tie-down devices to hold the cords tight. When buying new miniblinds, vertical blinds and draperies, ask for safety features to prevent child strangulation.

11.  Use door stops and door holders to help prevent injuries to fingers and hands. Door stops and door holders on doors and door hinges can help prevent small fingers and hands from being pinched or crushed in doors and door hinges.

Be sure any safety device for doors is easy to use and is not likely to break into small parts, which could be a choking hazard for young children.

12.  Use a cell or cordless phone to make it easier to continuously watch young children, especially when they’re in bathtubs, swimming pools, or other potentially dangerous areas. Cordless phones help you watch your child continuously without leaving the vicinity to answer a phone call. Cordless phones are especially helpful when children are in or near water, whether it’s the bathtub, the swimming pool, or the beach.

In summary, there are a number of different safety devices that can be purchased to ensure the safety of children in the home. Homeowners can ask an InterNACHI inspector about these and other safety measures during their next inspection.  Parents should be sure to do their own consumer research to find the most effective safety devices for their home that are age-appropriate for their children’s protection, as well as affordable and compatible with their household habits and lifestyles.