Tag Archives: List

What Really Matters in a Home Inspection

Buying a home?  The process can be stressful.  A home inspection is supposed to give you peace of mind, but it often has the opposite effect.  You will be asked to absorb a lot of information over a short time.  This often includes a written report, checklist, photographs, environmental reports, and what the inspector himself says during the inspection.  All this combined with the seller’s disclosure and what you notice yourself make the experience even more overwhelming.  What should you do?

Relax. Inspectors are professionals, and if yours is a member of InterNACHI, then you can trust that he/she is among the most highly trained in the industry. Most of your inspection will be related to maintenance recommendations and minor imperfections. These are good to know about.  However, the issues that really matter will fall into four categories:

  1. major defects:  An example of this would be a structural failure;
  2. things that lead to major defects: a small roof-flashing leak, for example;
  3. things that may hinder your ability to finance, legally occupy, or insure the home; and
  4. safety hazards, such as an exposed, live buss bar at the electric panel.

Anything in these categories should be addressed.  Often, a serious problem can be corrected inexpensively to protect both life and property (especially in categories 2 and 4).

Most sellers are honest and are often surprised to learn of defects uncovered during an inspection.  Realize that sellers are under no obligation to repair everything mentioned in the report.  No home is perfect.  Keep things in perspective.  Do not kill your deal over things that do not matter.  It is inappropriate to demand that a seller address deferred maintenance, conditions already listed on the seller’s disclosure, or nit-picky items.

Sellers’ Pre-Listing Inspections

Eventually, your buyers are going to conduct an inspection. You may as well know what they are going to find by getting there first.  Having an inspection performed ahead of time helps in many other ways, such as:

  • It allows you to see your home through the eyes of a critical and neutral third party.
  • It alerts you to immediate safety issues before agents and visitors tour your home.
  • It may alert you to items of immediate concern, such as radon gas or active termite infestation.
  • It permits you to make repairs ahead of time so that …
  • Defects won’t become negotiating stumbling blocks later.
  • There is no delay in obtaining the Use and Occupancy Permit.
  • You have the time to get reasonably priced contractors or make the repairs yourself, if qualified.
  • It helps you to price your home realistically.
  • It may relieve prospects’ concerns and suspicions.
  • It may encourage the buyer to waive his inspection contingency.
  • It reduces your liability by adding professional supporting documentation to your disclosure statement.

Never hire an inspector who is not a member of InterNACHI, which provides the most trusted and rigorous training for inspectors in the industry.

Copies of the inspection report, along with receipts for any repairs, should be made available to potential buyers.

Know Your Mortar Joints

by Nick Gromicko

Although good-quality bricks may outlast civilizations, the mortar that bonds them can crack and crumble after a number of years. Water penetration is the greatest degrader of mortar, and different mortar joints allow for varying degrees of water-resistance. Mortar joints in brickwork also take up a surprisingly large amount of a wall’s surface area and have a significant influence on the wall’s overall appearance. Some joint profiles accentuate their individual designs, while others merge the bricks and mortar to form a flush, homogeneous surface. InterNACHI’s graphics department has created a number of mortar joint images for convenient comparison.

The following are the most common mortar joints:

Concave Mortar Joint

Concave Joint

This popular type of joint is formed in mortar through the use of a curved steel jointing tool. It is very effective at resisting rain penetration due to its recessed profile and the tight seal formed by compacted mortar. Patterns are emphasized on a dense, smooth surface, and small irregularities are hidden.

"V"  Mortar Joint

 V-Joint

This type of joint can be made with a V-shaped jointer or a trowel soon after the bricks are laid. Ornamental and highly visible, the joint conceals small irregularities and is highly attractive. Like the concave joint, the V-joint is water-resistant because its formation compacts the mortar and its shape directs water away from the seal.

Weathered Mortar Joint

Weather Joint

Mortar is recessed increasingly from the bottom to the top of the joint, with the top end not receding more than 3/8-inch into the wall. The straight, inclined surfaces of the bed (horizontal) joints tend to catch the light and give the brickwork a neat, ordered appearance. This joint is less compacted than the concave and V-joints, although it is still suitable for exterior building walls.

Grapevine Mortar Joint

Grapevine Joint

While most popular during America’s Colonial period, this design is often replicated in newer brickwork. It is created with a grapevine jointer, which is a metal blade with a raised bead that creates an indented line in the center of the mortar joint. These lines are often rough and wavy, simulating the generally straight yet slightly irregular appearance of a grapevine. It is commonly used on matte-finish and antique-finish brickwork.

Extruded Mortar Joint

Extruded (Squeezed) Joint

This joint design requires no tooling and is formed naturally as excess mortar is squeezed out from between the bricks. The result is a rustic, textured appearance that is especially attractive in garden settings. This design is not recommended for exterior building walls due to the tendency for exposed mortar to break away, degrading the wall’s appearance.

Beaded Mortar Joint

Beaded Joint

Raising a rounded, bead-shaped segment of the mortar away from the mortar surface produces this old-fashioned, formal design. Although beaded joints can create interesting shadows, they are not recommended for exterior use due to their exposed ledges.

Struck Mortar Joint

Struck Joint

This joint is formed in a similar fashion as the weathered joint, except that the bottom edge, instead of the top edge, is recessed. It is a very poor insulator against water, as it will allow water to collect on its bottom ledge.

Raked Mortar Joint

Raked Joint

For this design, mortar is raked out to a consistent depth. Although often left roughened, it can be compacted for better water-resistance. This design highly emphasizes the joint and is sometimes used in modern buildings in order to match the historic appearance of their locales. Unless it is compressed, it is not as water-resistant as other mortar joints because the design incorporates ledges, which will collect water as it runs down the wall. Also, when mortar is removed from the joints, it becomes smeared on the surfaces of the brick at the recesses. To remove the mortar, contractors often aggressively clean the walls with pressurized water or acid solutions, which can open up additional voids and increase the possibility of water penetration.

Flush Mortar Joint

Flush Joint

This joint is best used when the wall is intended to be plastered or joints are to be hidden under paint. Because the mortar is not compressed, it is less water-resistant than some of the other designs.

 

In summary, mortar joints vary by their appearance or by their water-resistance properties.

Electrical Safety

Electricity is an essential part of our lives. However, it has the potential to cause great harm. Electrical systems will function almost indefinitely, if properly installed and not overloaded or physically abused. Electrical fires in our homes claim the lives of 485 Americans each year and injure 2,305 more. Some of these fires are caused by electrical system failures and appliance defects, but many more are caused by the misuse and poor maintenance of electrical appliances, incorrectly installed wiring, and overloaded circuits and extension cords.  Some safety tips to remember:

  • Never use anything but the proper fuse to protect a circuit.Never use anything but the proper fuse to protect a circuit.
  • Find and correct overloaded circuits.
  • Never place extension cords under rugs.
  • Outlets near water should be GFCI-type outlets.
  • Don’t allow trees near power lines to be climbed.
  • Keep ladders, kites, equipment and anything else away from overhead power lines.

Electrical Panels

Electricity enters the home through a control panel and a main switch where one can shut off all the power in an emergency. These panels are usually located in the basement. Control panels use either fuses or circuit breakers. Install the correct fuses for the panel. Never use a higher-numbered fuse or a metallic item, such as a penny. If fuses are used and there is a stoppage in power, look for the broken metal strip in the top of a blown fuse. Replace the fuse with a new one marked with the correct amperage. Reset circuit breakers from “off” to “on.” Be sure to investigate why the fuse or circuit blew. Possible causes include frayed wires, overloaded outlets, or defective appliances. Never overload a circuit with high-wattage appliances. Check the wattage on appliance labels. If there is frayed insulation or a broken wire, a dangerous short circuit may result and cause a fire. If power stoppages continue or if a frayed or broken wire is found, contact an electrician.

Outlets and Extension Cords

Make sure all electrical receptacles or outlets are three-hole, grounded outlets. If there is water in the area, there should be a GFCI or ground-fault circuit interrupter outlet. All outdoor outlets should be GFCIs. There should be ample electrical capacity to run equipment without tripping circuit breakers or blowing fuses. Minimize extension cord use. Never place them under rugs. Use extension cords sparingly and check them periodically. Use the proper electrical cord for the job, and put safety plugs in unused outlets.

Electrical Appliances

Appliances need to be treated with respect and care. They need room to breathe. Avoid enclosing them in a cabinet without proper openings, and do not store papers around them. Level appliances so they do not tip. Washers and dryers should be checked often. Their movement can put undue stress on electrical connections. If any appliance or device gives off a tingling shock, turn it off, unplug it, and have a qualified person correct the problem. Shocks can be fatal. Never insert metal objects into appliances without unplugging them. Check appliances periodically to spot worn or cracked insulation, loose terminals, corroded wires, defective parts and any other components that might not work correctly. Replace these appliances or have them repaired by a person qualified to do so.

Electrical Heating Equipment

Portable electrical heating equipment may be used in the home as a supplement to the home heating system. Caution must be taken when using these heating supplements. Keep them away from combustibles, and make sure they cannot be tipped over. Keep electrical heating equipment in good working condition. Do not use them in bathrooms because of the risk of contact with water and electrocution. Many people use electric blankets in their homes. They will work well if they are kept in good condition. Look for cracks and breaks in the wiring, plugs and connectors. Look for charred spots on both sides. Many things can cause electric blankets to overheat. They include other bedding placed on top of them, pets sleeping on top of them, and putting things on top of the blanket when it is in use. Folding the blankets can also bend the coils and cause overheating.

Children

Electricity is important to the workings of the home, but can be dangerous, especially to children. Electrical safety needs to be taught to children early on. Safety plugs should be inserted in unused outlets when toddlers are in the home. Make sure all outlets in the home have face plates. Teach children not to put things into electrical outlets and not to chew on electrical cords. Keep electrical wiring boxes locked. Do not allow children to come in contact with power lines outside. Never allow them to climb trees near power lines, utility poles or high tension towers.

Electricity and Water

A body can act like a lightning rod and carry the current to the ground. People are good conductors of electricity, particularly when standing in water or on a damp floor. Never use any electrical appliance in the tub or shower. Never touch an electric cord or appliance with wet hands. Do not use electrical appliances in damp areas or while standing on damp floors. In areas where water is present, use outlets with GFCIs. Shocks can be fatal.

Animal Hazards

Mice and other rodents can chew on electrical wires and damage them. If rodents are suspected or known to be in the home, be aware of the damage they may cause, and take measures to get rid of them.

Outside Hazards

There are several electrical hazards outside the home. Be aware of overhead and underground power lines. People have been electrocuted when an object they are moving has come in contact with the overhead power lines. Keep ladders, antennae, kites and poles away from power lines leading to the house and other buildings. Do not plant trees, shrubs or bushes under power lines or near underground power lines. Never build a swimming pool or other structure under the power line leading to your house. Before digging, learn the location of underground power lines.

Do not climb power poles or transmission towers. Never let anyone shoot or throw stones at insulators. If you have an animal trapped in a tree or on the roof near electric lines, phone your utility company. Do not take a chance of electrocuting yourself. Be aware of weather conditions when installing and working with electrical appliances. Never use electrical power tools or appliances with rain overhead or water underfoot. Use only outdoor lights, fixtures and extension cords. Plug into outlets with a GFCI. Downed power lines are extremely dangerous. If you see a downed power line, call the electric company, and warn others to stay away. If a power line hits your car while you are in it, stay inside unless the car catches fire. If the car catches fire, jump clear without touching metal and the ground at the same time.

MORE SAFETY PRECAUTIONS:

  • Routinely check your electrical appliances and wiring.
  • Hire an InterNACHI inspector. InterNACHI inspectors must pass rigorous safety training and are knowledgeable in the ways to reduce the likelihood of electrocution.
  • Frayed wires can cause fires.Frayed wires can cause fires. Replace all worn, old and damaged appliance cords immediately.
  • Use electrical extension cords wisely and don’t overload them.
  • Keep electrical appliances away from wet floors and counters; pay special care to electrical appliances in the bathroom and kitchen.
  • Don’t allow children to play with or around electrical appliances, such as space heaters, irons and hair dryers.
  • Keep clothes, curtains and other potentially combustible items at least 3 feet from all heaters.
  • If an appliance has a three-prong plug, use it only in a three-slot outlet. Never force it to fit into a two-slot outlet or extension cord.
  • Never overload extension cords or wall sockets. Immediately shut off, then professionally replace, light switches that are hot to the touch, as well as lights that flicker. Use safety closures to childproof electrical outlets.
  • Check your electrical tools regularly for signs of wear. If the cords are frayed or cracked, replace them. Replace any tool if it causes even small electrical shocks, overheats, shorts out or gives off smoke or sparks.

In summary, household electrocution can be prevented by following the tips offered in this guide and by hiring an InterNACHI inspector.

Dryer Vent Safety

by Nick Gromicko and Kenton Shepard

Clothes dryers evaporate the water from wet clothing by blowing hot air past them while they tumble inside a spinning drum. Heat is provided by an electrical heating element or gas burner. Some heavy garment loads can contain more than a gallon of water which, during the drying process, will become airborne water vapor and leave the dryer and home through an exhaust duct (more commonly known as a dryer vent).

A vent that exhausts moist air to the home’s exterior has a number of requirements: Dryer Vent

  1. It should be connected. The connection is usually behind the dryer but may be beneath it. Look carefully to make sure it’s actually connected.
  2. It should not be restricted. Dryer vents are often made from flexible plastic or metal duct, which may be easily kinked or crushed where they exit the dryer and enter the wall or floor. This is often a problem since dryers tend to be tucked away into small areas with little room to work. Vent hardware is available which is designed to turn 90° in a limited space without restricting the flow of exhaust air. Restrictions should be noted in the inspector’s report. Airflow restrictions are a potential fire hazard.
  3. One of the reasons that restrictions are a potential fire hazard is that, along with water vapor evaporated out of wet clothes, the exhaust stream carries lint – highly flammable particles of clothing made of cotton and polyester. Lint can accumulate in an exhaust duct, reducing the dryer’s ability to expel heated water vapor, which then accumulates as heat energy within the machine. As the dryer overheats, mechanical failures can trigger sparks, which can cause lint trapped in the dryer vent to burst into flames. This condition can cause the whole house to burst into flames. Fires generally originate within the dryer but spread by escaping through the ventilation duct, incinerating trapped lint, and following its path into the building wall.

InterNACHI believes that house fires caused by dryers are far more common than are generally believed, a fact that can be appreciated upon reviewing statistics from the National Fire Protection Agency. Fires caused by dryers in 2005 were responsible for approximately 13,775 house fires, 418 injuries, 15 deaths, and $196 million in property damage. Most of these incidents occur in residences and are the result of improper lint cleanup and maintenance. Fortunately, these fires are very easy to prevent.

The recommendations outlined below reflect International Residential Code (IRC) SECTION M1502 CLOTHES DRYER EXHAUST guidelines:

M1502.5 Duct construction.
Exhaust ducts shall be constructed of minimum 0.016-inch-thick (0.4 mm) rigid metal ducts, having smooth interior surfaces, with joints running in the direction of air flow. Exhaust ducts shall not be connected with sheet-metal screws or fastening means which extend into the duct.

This means that the flexible, ribbed vents used in the past should no longer be used. They should be noted as a potential fire hazard if observed during an inspection.

M1502.6 Duct length.

The maximum length of a clothes dryer exhaust duct shall not exceed 25 feet (7,620 mm) from the dryer location to the wall or roof termination. The maximum length of the duct shall be reduced 2.5 feet (762 mm) for each 45-degree (0.8 rad) bend, and 5 feet (1,524 mm) for each 90-degree (1.6 rad) bend. The maximum length of the exhaust duct does not include the transition duct.

This means that vents should also be as straight as possible and cannot be longer than 25 feet. Any 90-degree turns in the vent reduce this 25-foot number by 5 feet, since these turns restrict airflow.

A couple of exceptions exist:

  1. The IRC will defer to the manufacturer’s instruction, so if the manufacturer’s recommendation permits a longer exhaust vent, that’s acceptable. An inspector probably won’t have the manufacturer’s recommendations, and even if they do, confirming compliance with them exceeds the scope of a General Home Inspection.
  2. The IRC will allow large radius bends to be installed to reduce restrictions at turns, but confirming compliance requires performing engineering calculation in accordance with the ASHRAE Fundamentals Handbook, which definitely lies beyond the scope of a General Home Inspection.

M1502.2 Duct termination. Dryer Vent Safety
Exhaust ducts shall terminate on the outside of the building or shall be in accordance with the dryer manufacturer’s installation instructions. Exhaust ducts shall terminate not less than 3 feet (914 mm) in any direction from openings into buildings. Exhaust duct terminations shall be equipped with a backdraft damper. Screens shall not be installed at the duct termination.

Inspectors will see many dryer vents terminate in crawlspaces or attics where they deposit moisture, which can encourage the growth of mold, wood decay, or other material problems. Sometimes they will terminate just beneath attic ventilators. This is a defective installation. They must terminate at the exterior and away from a door or window. Also, screens may be present at the duct termination and can accumulate lint and should be noted as improper.

M1502.3 Duct size.
The diameter of the exhaust duct shall be as required by the clothes dryer’s listing and the manufacturer’s installation instructions.

Look for the exhaust duct size on the data plate.

M1502.4 Transition ducts.
Transition ducts shall not be concealed within construction. Flexible transition ducts used to connect the dryer to the exhaust duct system shall be limited to single lengths not to exceed 8 feet (2438 mm), and shall be listed and labeled in accordance with UL 2158A.

In general, an inspector will not know specific manufacturer’s recommendations or local applicable codes and will not be able to confirm the dryer vent’s compliance to them, but will be able to point out issues that may need to be corrected.

Child-Proofing Your Home: 12 Safety Devices to Protect Your Children

About 2.5 million children are injured or killed by hazards in the home each year. The good news is that many of these incidents can be prevented by using simple child-safety devices on the market today. Any safety device you buy should be sturdy enough to prevent injury to your child, yet easy for you to use. It’s important to follow installation instructions carefully.

In addition, if you have older children in the house, be sure they re-secure safety devices. Remember, too, that no device is completely childproof; determined youngsters have been known to disable them. You can childproof your home for a fraction of what it would cost to have a professional do it. And safety devices are easy to find. You can buy them at hardware stores, baby equipment shops, supermarkets, drug stores, home and linen stores, and through online and mail-order catalogues.

InterNACHI inspectors, too, should know what to tell clients who are concerned about the safety of their children. Here are some child-safety devices that can help prevent many injuries to young children.

1.  Use safety latches and locks for cabinets and drawers in kitchens, bathrooms, and other areas to help prevent poisonings and other injuries. Safety latches and locks on cabinets and drawers can help prevent children from gaining access to medicines and household cleaners, as well as knives and other sharp objects.

Look for safety latches and locks that adults can easily install and use, but that are sturdy enough to withstand pulls and tugs from children. Safety latches are not a guarantee of protection, but they can make it more difficult for children to reach dangerous substances. Even products with child-resistant packaging should be locked away out of reach; this packaging is not childproof.

But, according to Colleen Driscoll, executive director of the International Association for Child Safety (IAFCS), “Installing an ineffective latch on a cabinet is not an answer for helping parents with safety.  It is important to understand parental habits and behavior.  While a latch that loops around cabinet knob covers is not expensive and easy to install, most parents do not consistently re-latch it.”

Parents should be sure to purchase and install safety products that they will actually adapt to and use.

2.  Use safety gates to help prevent falls down stairs and to keep children away from dangerous areas. Look for safety gates that children cannot dislodge easily, but that adults can open and close without difficulty. For the top of stairs, gates that screw into the wall are more secure than “pressure gates.”

New safety gates that meet safety standards display a certification seal from the Juvenile Products Manufacturers Association (JPMA). If you have an older safety gate, be sure it doesn’t have “V” shapes that are large enough for a child’s head and neck to fit into.

3.  Use door locks to help prevent children from entering rooms and other areas with possible dangers, including swimming pools.

To prevent access to swimming pools, door locks on safety gates should be placed high, out of reach of young children. Locks should be used in addition to fences and alarms. Sliding glass doors with locks that must be re-secured after each use are often not an effective barrier to pool access.

Door knob covers, while inexpensive and recommended by some, are generally not effective for children who are tall enough to reach the doorknob; a child’s ingenuity and persistence can usually trump the cover’s effectiveness.

4.  Use anti-scald devices for faucets and shower heads, and set your water heater temperature to 120° F to help prevent burns from hot water. A plumber may need to install these.

5.  Use smoke detectors on every level of your home and near bedrooms to alert you to fires. Smoke detectors are essential safety devices for protection against fire deaths and injuries. Check smoke detectors once a month to make sure they’re working. If detectors are battery-operated, change batteries at least once a year, or consider using 10-year batteries.

6.  Use window guards and safety netting to help prevent falls from windows, balconies, decks and landings. Window guards and safety netting for balconies and decks can help prevent serious falls.  Check these safety devices frequently to make sure they are secure and properly installed and maintained. There should be no more than 4 inches between the bars of the window guard. If you have window guards, be sure at least one window in each room can be easily used for escape in a fire. Window screens are not effective for preventing children from falling out of windows.

7.  Use corner and edge bumpers to help prevent injuries from falls against sharp edges of furniture and fireplaces. Corner and edge bumpers can be used with furniture and fireplace hearths to help prevent injuries from falls, and to soften falls against sharp and rough edges.

Be sure to look for bumpers that stay securely on furniture and hearth edges.

8.  Use receptacle or outlet covers and plates to help prevent children from electrical shock and possible electrocution.

Be sure the outlet protectors cannot be easily removed by children and are large enough so that children cannot choke on them.

9.  Use a carbon monoxide (CO) detector outside bedrooms to help prevent CO poisoning. Consumers should install CO detectors near sleeping areas in their homes. Households that should use CO detectors include those with gas or oil heat or with attached garages.

10.  Cut window blind cords to help prevent children from strangling in blind-cord loops. Window blind cord safety tassels on miniblinds and tension devices on vertical blinds and drapery cords can help prevent deaths and injuries from strangulation in the loops of cords. Inner cord stops can help prevent strangulation in the inner cords of window blinds.

However, the IAFCS’s Ms. Driscoll states, “Cordless is best.  Although not all families are able to replace all products, it is important that parents understand that any corded blind or window treatment can still be a hazard.  Unfortunately, children are still becoming entrapped in dangerous blind cords despite advances in safety in recent years.”

For older miniblinds, cut the cord loop, remove the buckle, and put safety tassels on each cord. Be sure that older vertical blinds and drapery cords have tension or tie-down devices to hold the cords tight. When buying new miniblinds, vertical blinds and draperies, ask for safety features to prevent child strangulation.

11.  Use door stops and door holders to help prevent injuries to fingers and hands. Door stops and door holders on doors and door hinges can help prevent small fingers and hands from being pinched or crushed in doors and door hinges.

Be sure any safety device for doors is easy to use and is not likely to break into small parts, which could be a choking hazard for young children.

12.  Use a cell or cordless phone to make it easier to continuously watch young children, especially when they’re in bathtubs, swimming pools, or other potentially dangerous areas. Cordless phones help you watch your child continuously without leaving the vicinity to answer a phone call. Cordless phones are especially helpful when children are in or near water, whether it’s the bathtub, the swimming pool, or the beach.

In summary, there are a number of different safety devices that can be purchased to ensure the safety of children in the home. Homeowners can ask an InterNACHI inspector about these and other safety measures during their next inspection.  Parents should be sure to do their own consumer research to find the most effective safety devices for their home that are age-appropriate for their children’s protection, as well as affordable and compatible with their household habits and lifestyles.

15 Tools Every Homeowner Should Own

Written by Nick Gromicko

The following items are essential tools, but this list is by no means exhaustive. Feel free to ask an InterNACHI inspector during your next inspection about other tools that you might find useful.

1.  Plunger Standard Plunger

A clogged sink or toilet is one of the most inconvenient household problems that you will face. With a plunger on hand, however, you can usually remedy these plumbing issues relatively quickly. It is best to have two plungers — one for the sink and one for the toilet.

2.  Combination Wrench Set

One end of a combination wrench set is open and the other end is a closed loop. Nuts and bolts are manufactured in standard and metric sizes, and because both varieties are widely used, you’ll need both sets of wrenches. For the most control and leverage, always pull the wrench toward you, instead of pushing on it. Also, avoid over-tightening.

3.  Slip-Joint Pliers

Use slip-joint pliers to grab hold of a nail, a nut, a bolt, and much more. These types of pliers are versatile because of the jaws, which feature both flat and curved areas for gripping many types of objects. There is also a built-in slip-joint, which allows the user to quickly adjust the jaw size to suit most tasks.

4.  Adjustable Wrench

Adjustable wrenches are somewhat awkward to use and can damage a bolt or nut if they are not handled properly. However, adjustable wrenches are ideal for situations where you need two wrenches of the same size. Screw the jaws all the way closed to avoid damaging the bolt or nut.

5.  Caulking Gun Caulking gun

Caulking is the process of sealing up cracks and gaps in various structures and certain types of piping. Caulking can provide noise mitigation and thermal insulation, and control water penetration. Caulk should be applied only to areas that are clean and dry.

6.  Flashlight

None of the tools in this list is of any use if you cannot visually inspect the situation. The problem, and solution, are apparent only with a good flashlight. A traditional two-battery flashlight is usually sufficient, as larger flashlights may be too unwieldy.

7.  Tape Measure

Measuring house projects requires a tape measure — not a ruler or a yardstick. Tape measures come in many lengths, although 25 feet is best.  Measure everything at least twice to ensure accuracy.

8.  Hacksaw
A hacksaw is useful for cutting metal objects, such as pipes, bolts and brackets. Hacksaws look thin and flimsy, but they’ll easily cut through even the hardest of metals. Blades are replaceable, so focus your purchase on a quality hacksaw frame.

9. Torpedo Level Torpedo Level

Only a level can be used to determine if something, such as a shelf, appliance or picture, is correctly oriented. The torpedo-style level is unique because it not only shows when an object is perfectly horizontal or vertical, but it also has a gauge that shows when an object is at a 45-degree angle. The bubble in the viewfinder must be exactly in the middle — not merely close.

10.  Safety Glasses / Goggles
For all tasks involving a hammer or a power tool, you should always wear safety glasses or goggles. They should also be worn while you mix chemicals.

11.  Claw Hammer
A good hammer is one of the most important tools you can own.  Use it to drive and remove nails, to pry wood loose from the house, and in combination with other tools. They come in a variety of sizes, although a 16-ounce hammer is the best all-purpose choice.

12.  Screwdriver Set
It is best to have four screwdrivers: a small and large version of both a flathead and a Phillips-head screwdriver. Electrical screwdrivers are sometimes convenient, but they’re no substitute.  Manual screwdrivers can reach into more places and they are less likely to damage the screw.

13.  Wire Cutters Wire Cutters

Wire cutters are pliers designed to cut wires and small nails. The side-cutting style (unlike the stronger end-cutting style) is handy, but not strong enough to cut small nails.

14.  Respirator / Safety Mask
While paints and other coatings are now manufactured to be less toxic (and lead-free) than in previous decades, most still contain dangerous chemicals, which is why you should wear a mask to avoid accidentally inhaling. A mask should also be worn when working in dusty and dirty environments. Disposable masks usually come in packs of 10 and should be thrown away after use. Full and half-face respirators can be used to prevent the inhalation of very fine particles that ordinary facemasks will not stop.

15.  Duct Tape

This tape is extremely strong and adaptable. Originally, it was widely used to make temporary repairs to many types of military equipment. Today, it’s one of the key items specified for home emergency kits because it is water-resistant and extremely sticky.

10 Ways to Save Energy

Most people don’t know how easy it is to make their homes run on less energy, and here at InterNACHI, we want to change that. Drastic reductions in heating, cooling and electricity costs can be accomplished through very simple changes, most of which homeowners can do themselves. Of course, for homeowners who want to take advantage of the most up-to-date knowledge and systems in home energy efficiency, InterNACHI energy auditors can perform in-depth testing to find the best energy solutions for your particular home.

Why make your home more energy efficient? Here are a few good reasons:

  • Federal, state, utility and local jurisdictions’ financial incentives, such as tax breaks, are very advantageous for homeowners in most parts of the U.S.
  • It saves money. It costs less to power a home that has been converted to be more energy-efficient.
  • It increases the comfort level indoors.
  • It reduces our impact on climate change. Many scientists now believe that excessive energy consumption contributes significantly to global warming.
  • It reduces pollution. Conventional power production introduces pollutants that find their way into the air, soil and water supplies.

1. Find better ways to heat and cool your house. 

As much as half of the energy used in homes goes toward heating and cooling. The following are a few ways that energy bills can be reduced through adjustments to the heating and cooling systems:

  • Install a ceiling fan. Ceiling fans can be used in place of air conditioners, which require a large amount of energy.
  • Periodically replace air filters in air conditioners and heaters.
  • Set thermostats to an appropriate temperature. Specifically, they should be turned down at night and when no one is home. In most homes, about 2% of the heating bill will be saved for each degree that the thermostat is lowered for at least eight hours each day. Turning down the thermostat from 75° F to 70° F, for example, saves about 10% on heating costs.
  • Install a programmable thermostat. A programmable thermostat saves money by allowing heating and cooling appliances to be automatically turned down during times that no one is home and at night. Programmable thermostats contain no mercury and, in some climate zones, can save up to $150 per year in energy costs.
  • Install a wood stove or a pellet stove. These are more efficient sources of heat than furnaces.
  • At night, curtains drawn over windows will better insulate the room.

2. Install a tankless water heater.

Demand-type water heaters (tankless or instantaneous) provide hot water only as it is needed. They don’t produce the standby energy losses associated with traditional storage water heaters, which will save on energy costs. Tankless water heaters heat water directly without the use of a storage tank. When a hot water tap is turned on, cold water travels through a pipe into the unit. A gas burner or an electric element heats the water. As a result, demand water heaters deliver a constant supply of hot water. You don’t need to wait for a storage tank to fill up with enough hot water.

3. Replace incandescent lights.

The average household dedicates 11% of its energy budget to lighting. Traditional incandescent lights convert approximately only 10% of the energy they consume into light, while the rest becomes heat. The use of new lighting technologies, such as light-emitting diodes (LEDs) and compact fluorescent lamps (CFLs), can reduce the energy use required by lighting by 50% to 75%. Advances in lighting controls offer further energy savings by reducing the amount of time that lights are on but not being used. Here are some facts about CFLs and LEDs:

  • CFLs use 75% less energy and last about 10 times longer than traditional incandescent bulbs.
  • LEDs last even longer than CFLs and consume less energy.
  • LEDs have no moving parts and, unlike CFLs, they contain no mercury.

4. Seal and insulate your home.

Sealing and insulating your home is one of the most cost-effective ways to make a home more comfortable and energy-efficient, and you can do it yourself. A tightly sealed home can improve comfort and indoor air quality while reducing utility bills. An InterNACHI energy auditor can assess  leakage in the building envelope and recommend fixes that will dramatically increase comfort and energy savings.

The following are some common places where leakage may occur:

  • electrical receptacles/outlets;
  • mail slots;
  • around pipes and wires;
  • wall- or window-mounted air conditioners;
  • attic hatches;
  • fireplace dampers;
  • inadequate weatherstripping around doors;
  • baseboards;
  • window frames; and
  • switch plates.

Because hot air rises, air leaks are most likely to occur in the attic. Homeowners can perform a variety of repairs and maintenance to their attics that save them money on cooling and heating, such as:

  • Plug the large holes. Locations in the attic where leakage is most likely to be the greatest are where walls meet the attic floor, behind and under attic knee walls, and in dropped-ceiling areas.
  • Seal the small holes. You can easily do this by looking for areas where the insulation is darkened. Darkened insulation is a result of dusty interior air being filtered by insulation before leaking through small holes in the building envelope. In cold weather, you may see frosty areas in the insulation caused by warm, moist air condensing and then freezing as it hits the cold attic air. In warmer weather, you’ll find water staining in these same areas. Use expanding foam or caulk to seal the openings around plumbing vent pipes and electrical wires. Cover the areas with insulation after the caulk is dry.
  • Seal up the attic access panel with weatherstripping. You can cut a piece of fiberglass or rigid foamboard insulation in the same size as the attic hatch and glue it to the back of the attic access panel. If you have pull-down attic stairs or an attic door, these should be sealed in a similar manner.

5. Install efficient showerheads and toilets.

The following systems can be installed to conserve water usage in homes:

  • low-flow showerheads. They are available in different flow rates, and some have a pause button which shuts off the water while the bather lathers up;
  • low-flow toilets. Toilets consume 30% to 40% of the total water used in homes, making them the biggest water users. Replacing an older 3.5-gallon toilet with a modern, low-flow 1.6-gallon toilet can reduce usage an average of 2 gallons-per-flush (GPF), saving 12,000 gallons of water per year. Low-flow toilets usually have “1.6 GPF” marked on the bowl behind the seat or inside the tank;
  • vacuum-assist toilets. This type of toilet has a vacuum chamber that uses a siphon action to suck air from the trap beneath the bowl, allowing it to quickly fill with water to clear waste. Vacuum-assist toilets are relatively quiet; and
  • dual-flush toilets. Dual-flush toilets have been used in Europe and Australia for years and are now gaining in popularity in the U.S. Dual-flush toilets let you choose between a 1-gallon (or less) flush for liquid waste, and a 1.6-gallon flush for solid waste. Dual-flush 1.6-GPF toilets reduce water consumption by an additional 30%.

6. Use appliances and electronics responsibly.

Appliances and electronics account for about 20% of household energy bills in a typical U.S. home. The following are tips that will reduce the required energy of electronics and appliances:

  • Refrigerators and freezers should not be located near the stove, dishwasher or heat vents, or exposed to direct sunlight. Exposure to warm areas will force them to use more energy to remain cool.
  • Computers should be shut off when not in use. If unattended computers must be left on, their monitors should be shut off. According to some studies, computers account for approximately 3% of all energy consumption in the United States.
  • Use efficient ENERGY STAR-rated appliances and electronics. These devices, approved by the U.S. Department of Energy and the Environmental Protection Agency’s ENERGY STAR Program, include TVs, home theater systems, DVD players, CD players, receivers, speakers, and more. According to the EPA, if just 10% of homes used energy-efficient appliances, it would reduce carbon emissions by the equivalent of 1.7 million acres of trees.
  • Chargers, such as those used for laptops and cell phones, consume energy when they are plugged in. When they are not connected to electronics, chargers should be unplugged.
  • Laptop computers consume considerably less electricity than desktop computers.

7. Install daylighting as an alternative to electrical lighting.

Daylighting is the practice of using natural light to illuminate the home’s interior. It can be achieved using the following approaches:

  • skylights. It’s important that they be double-pane or they may not be cost-effective. Flashing skylights correctly is key to avoiding leaks;
  • light shelves. Light shelves are passive devices designed to bounce light deep into a building. They may be interior or exterior. Light shelves can introduce light into a space up to 2½ times the distance from the floor to the top of the window, and advanced light shelves may introduce four times that amount;
  • clerestory windows.  Clerestory windows are short, wide windows set high on the wall. Protected from the summer sun by the roof overhang, they allow winter sun to shine through for natural lighting and warmth; and
  • light tubes.  Light tubes use a special lens designed to amplify low-level light and reduce light intensity from the midday sun. Sunlight is channeled through a tube coated with a highly reflective material, and then enters the living space through a diffuser designed to distribute light evenly.

8. Insulate windows and doors.

About one-third of the home’s total heat loss usually occurs through windows and doors. The following are ways to reduce energy lost through windows and doors:

  • Seal all window edges and cracks with rope caulk. This is the cheapest and simplest option.
  • Windows can be weatherstripped with a special lining that is inserted between the window and the frame. For doors, apply weatherstripping around the whole perimeter to ensure a tight seal when they’re closed. Install quality door sweeps on the bottom of the doors, if they aren’t already in place.
  • Install storm windows at windows with only single panes. A removable glass frame can be installed over an existing window.
  • If existing windows have rotted or damaged wood, cracked glass, missing putty, poorly fitting sashes, or locks that don’t work, they should be repaired or replaced.

9. Cook smart.

An enormous amount of energy is wasted while cooking. The following recommendations and statistics illustrate less wasteful ways of cooking:

  • Convection ovens are more efficient that conventional ovens. They use fans to force hot air to circulate more evenly, thereby allowing food to be cooked at a lower temperature. Convection ovens use approximately 20% less electricity than conventional ovens.
  • Microwave ovens consume approximately 80% less energy than conventional ovens.
  • Pans should be placed on the matching size heating element or flame.
  • Using lids on pots and pans will heat food more quickly than cooking in uncovered pots and pans.
  • Pressure cookers reduce cooking time dramatically.
  • When using conventional ovens, food should be placed on the top rack. The top rack is hotter and will cook food faster.

10. Change the way you do laundry.

  • Do not use the medium setting on your washer. Wait until you have a full load of clothes, as the medium setting saves less than half of the water and energy used for a full load.
  • Avoid using high-temperature settings when clothes are not very soiled. Water that is 140° F uses far more energy than 103° F for the warm-water setting, but 140° F isn’t that much more effective for getting clothes clean.
  • Clean the lint trap every time before you use the dryer. Not only is excess lint a fire hazard, but it will prolong the amount of time required for your clothes to dry.
  • If possible, air-dry your clothes on lines and racks.
  • Spin-dry or wring clothes out before putting them into a dryer.